News

101件事

(You always wanted to know about the C-130)

In the process of creating the draft SRD, the authors accumulated a large quantity of detailed technical information about the existing capability of the C-130, and a few derived requirements representing best practices/lessons learned. The level of detail exceeded what was reasonable for the SRD and was deleted from early drafts, but is certainly valuable for understanding the baseline C-130. We had no way of knowing whether this information is available and familiar to the C-130 experts in the contractor community, so we decided to publish it in the form of this document,101件事Contractors Need to Know about the C-130. If101件事在某些地方似乎有些脱节,这是这种遗产的结果。这是一个活生生的文件,随着我们完善SRD并为RFP积累其他信息时,它会继续增长。

1.0任务*

1.1任务场景*

1.1.1 SOF Mission Description*

2.0 Global Air Traffic Management (GATM)*

3.0 FMS*

3.1 Navigation Modes*

3.1.1 Kalman Filter Navigation Solution (KFNS)*

3.1.2 Independent GPS Mode*

3.1.3独立惯性模式*

3.1.4卡尔曼过滤器*

3.1.5位置更新*

3.1.6 Altitude Computation*

3.2 Typical airdrop geometries*

3.3 Rendezvous Guidance and Steering*

3.4轨道指导*

3.5 Lateral and Vertical Navigation*

3.5.1 Lateral Leg Transitions*

3.5.2 Airdrop Guidance and Steering Functions*

3.5.3机载传感器方法(ASA)*

4.0自动座*

4.1自动绩效要求*

5.0飞行甲板*

6.0 Station Keeping Equipment (SKE)*

7.0 RADAR Beacon Characteristics*

8.0湍流*

9.0空气数据系统*

9.1 Pitot � Static System*

10.0航空器电气系统*

11.0 Operational Flight Software*

11.1 Application Program Interface (API)*

12.0软件验证和验证*

12.1软件测试/认证*

  1. Missions
    1. Mission Scenarios
    2. C-130提供了人员或货物的快速运输,以通过降落伞向指定的跌落区或降落在运营剧院内的严峻地点。两种交付方法都需要在白天/夜晚和VMC/IMC中高度的精度。除剧院空运角色外,C-130还作为远程试验车辆的发射平台,也是人员和数据包的恢复平台。它通常会渗透飓风,提供战斗通信链接,促进在陆地上或海上的营救,为我们在北极和南极的偏远站点提供服务,在北极和南极,Refuels飞机,播放无线电和电视信息时,并用于交付Ordnance和战斗和战斗,并森林大火。此外,C-130还增加了战略空运力量,并在需要时支持人道主义,维持和平和救灾行动。

      1. SOF Mission Description

Special Operations Forces (SOF) C-130 aircraft are used in support of Special Operations (SO) to achieve military, political, economic, or psychological objectives by unconventional military means. These operations are often conducted in hostile, denied, or politically sensitive areas throughout the full range of military operations, either independently or in coordination with the operations of conventional forces. Assigned mission areas for SOF aircraft include but are not limited to:

Sensitive military-political considerations often require the employment of low visibility or covert techniques to deny knowledge of the presence, route, and intent of SOF missions. When engaged in SOF missions, SOF aviation forces are inherently vulnerable to detection and subsequent engagement by hostile ground and airborne threats (See SOF Threat Environment Description (SOFTED), dated Jan 98 for a description of the SOF threat environment).

        1. 当前的策略
        2. The concept of Detection Avoidance Navigation/Threat Avoidance Navigation (DAN/TAN) is used to avoid detection and engagement by hostile radio frequency band, infrared, and optical threats. Historically, SOF aircrews have relied on detailed mission planning, intelligence and low altitude Terrain Following/Terrain Avoidance (TF/TA) flight to reduce the risk of detection and subsequent threat engagement. On currently configured SOF aircraft, aircrews employ conventional TF/TA radar and radar altimeter as primary sensors to enable low altitude terrain following flight. Night Vision Goggles (NVGs) may also be used to supplement these systems where forward visibility and speed permit. Installed electronic warfare (EW) systems coupled with evasive tactics are used to disengage from or defeat threats in the event detection avoidance fails.

        3. The Tactical Reality
        4. 鉴于穿透飞机通过雷达和雷达高度计的常见使用,敌对的空中国防军通过对简单的被动检测和雷达/通信干扰系统做出反应。早期被动检测系统的成功导致了更复杂的被动检测海军和陆基防空系统的范围,包括监视飞机和可摩擦的地表向空中导弹团队。现在,现代的被动探测器能够在战术意义上的范围内检测低空飞行的飞机,远远超出了视线(BLOS)。由于被动检测,飞机雷达和其他射频发射器已通过提供足够的警告时间来提醒和协调广泛的威胁系统的使用,从而成为敌对主动防空力(AD)部队的帮助。被动检测以及随之而来的敌对势力致死互动的威胁迫使空军驾驶在较低的海拔高度上飞行,包括地球午睡(NOE)。以极低的高度飞行增加了遇到电源线,电线和塔楼的危险潜力。影响当前战术状况的另一个因素是现代移动广告系统的部署,这些系统能够从一个位置迅速移动到另一个位置并迅速建立致命的战斗能力。由于新SOF任务所需的更大范围,任务持续时间也增加了。已经确定了一种物质解决方案的要求,其中包括更新的航空设备和EW设备,以应对在飞行后低空地形时对当前的SOF飞机的预期威胁。

        5. 确定要求

远程被动检测的威胁决定了降低的射频排放的需求,同时保持飞行后达到低海拔地形的能力。存在一种要求,对于采用减少的排放和其他方法来降低敌对AD系统参与的可能性,截距/低检测概率(LPI/LPD)TF/TA系统的概率很低。试图最大化使用可用地形掩蔽的低空飞行会产生避开障碍物(OA)系统的要求,该系统的功能可以及时提醒机组人员,以及时爬升或避免沿着飞行路线遇到的未见障碍。提高任务持续时间和移动现代广告系统提出了要求,以提醒机组人员对新的或不断变化的威胁条件。经过修订的电子战斗秩序(EOB)应及时提交机组人员,以便他们在遇到威胁之前采取适当的行动。需要一个系统,该系统提供超出视觉威胁检测/地理位置(blostd/g)的系统。该系统将提醒机组人员对地平线的威胁及其及时的位置采取回避行动。需要频繁及时更新EOB,以使机组人员能够做出明智的决定,涉及避免或最小化感知威胁所需的飞行路线和海拔高度。需要一个系统来快速重新计划飞行路线,并将结果呈现给机组人员以迅速决定。数据流的增加应及时,逻辑方式组织和呈现,以实现快速的机组响应。 A requirement exists for a cockpit management/display system that provides Enhanced Situational Awareness (ESA) capability to the aircrew. ESA will coordinate the receipt, disposition, and display of in-flight intelligence updates (EOB). ESA will provide control, coordination, and employment of onboard EW systems to defeat or disengage from threats. ESA will also provide the ability to swiftly re-plan routes of flight in time for the aircrew to make correct rapid responses that ensure survival and enhance the probability of mission success.

  1. 全球空中交通管理(GATM)
  2. 需要跨AMC武器系统的GATM设备的通用性,以减少AMC支持结构,尤其是用于Enroute位置和前部部署的单元。必须使用导航,监视和不计划更换的通信设备的GATM接口。

  3. FMS
    1. Navigation Modes
    2. The FMS shall use sensors as shown below:

      INU1应为飞行员集成的Kalman滤波器导航解决方案(KFN)的主要INU,并且INU2应为副驾驶集成KFN的主要INU。如果将功率从主要INU删除或主要INU失败,则应建议用户。

      用户指挥的主要INU更改应需要用户验证。此要求并不能禁止用户可以在INUS之间进行反击的速度限制时间限制。

      1. 卡尔曼过滤导航解决方案(KFNS)
      2. 每个KFN模式应有四个子类。submode应与用于在KFN模式下导航的传感器对应。子模具应根据传感器的功能状态自动更改。KFN subsodes以导航精度的顺序列出,从最准确的subsode开始:

        G-i

        The G-I submode shall be active when both the INS and GPS data are valid.

        GPS

        The GPS submode shall be active when the GPS data are valid and INS data are invalid.

        D-I

        The D-I submode shall be active when the GPS data are invalid and the INS and Doppler radar data are valid.

        ins

        The INS submode shall be active when neither the GPS nor the Doppler radar data are valid, but the data from at least one INS is valid.

        The typical startup sequence on the ground shall follow a predictable upgrade of the KFNS submodes. The KFNS mode corresponds with a single navigation solution, and only one submode may be active at a given time, for a given computer.

        The KFNS shall statistically characterize the performance of the GPS, INS, and DVS. The characterized behavior of the INS and Doppler radar, shall be used to calibrate the D-I Kalman filter. If the GPS performance degradation is momentary, the KFNS submode shall return automatically to G-I.

        There shall be two other submodes that engage during airborne alignment of the PRIMARY INU. Since these submodes shall be submodes of the KFNS submode, they shall actually be subsubmodes of the INTEGRATED KFNS mode.

        GPS-aided In-Air Alignment shall be referred to as GIAA. This shall be submode of the G-I submode.

        多普勒雷达辅助的空中对准应称为diaa。这应为D-I subbode的子模具。

        在命令空降对齐后,卡尔曼过滤器应作为扩展的卡尔曼过滤器运行,这意味着误差估计值应反馈给INU,以纠正INU计算的惯性导航解决方案。

      3. 独立的GPS模式
      4. 独立的GPS解决方案应使用GPS接收器的位置计算。由于GPS位置样品速率仅为1 Hz,因此GPS速度应用于推断位置模拟4 Hz速率以平滑显示和MCDU指示。

      5. 独立的惯性模式
      6. The INS shall calculate the navigation solution independent of the FMS. Operation in the Inertial-only submode of the INTEGRATED KFNS mode shall be the same as the INDEPENDENT INERTIAL mode except for the following:

        当INU操作时,应始终计算独立的惯性解决方案。只有在多普勒雷达和GPS接收器失败时,仅惯性的subsode才能活跃。

        In the INDEPENDENT INERTIAL mode, position shall be initialized during airborne alignment. In the Inertial-only submode, position shall be reinitialized to the position of the previously active submode.

        In the INDEPENDENT INERTIAL mode, TACAN blending may not be engaged. In the Inertial-only submode, TACAN Blending may be engaged.

        仅当INU处于NAV模式(而不是AA模式)时,才可以更新独立的惯性导航器。(仅惯性subsode中的FMS导航器可能始终更新,独立于INU模式。)如果在参与INU AA模式之前更新了FMS Navigator,则位置校正应反馈给INU并应用于独立当AA模式参与时,惯性导航解决方案。因此,独立的惯性导航器应间接更新。但是,如果FMS在唯一的subsode中,并且在INU处于AA模式时进行更新(这意味着多普勒雷达在diaa启动后失败),则位置校正不得反馈给INU,因此,仅针对FMS观察到位置更新。

      7. 卡尔曼过滤器
      8. Kalman滤波器应在集成KFNS模式的G-I,GIAA,D-I和DIAA子模具中提供集成导航功能。GPS多普勒雷达Kalman过滤器应确定多普勒雷达误差特性。

        The G-I Kalman filter shall operate open loop after a gyrocompass alignment. The G-I Kalman filter shall operate closed loop after an airborne alignment. When the GPS is unavailable, the last GPS-derived estimate of the INU state vector shall be propagated. The G-I Kalman filter shall improve upon the raw GPS navigation by propagating the INU state vector through intermittent periods of GPS performance degradation. The last GPS-derived estimate of the INU state vector shall become the current estimate for correcting the INU.

        Kalman滤波器模式过渡和初始化应自动执行。

        GPS辅助导航器(G-I KALMAN过滤器)不得降低现有的多普勒雷达雷达剂量惯性导航器(D-I Kalman滤波器)的精度。D-I Kalman滤波器不得受到G-I Kalman滤波器的不利影响。

        The INU and GPS data shall be synchronized. The Kalman filter shall be initialized in the event the PRIMARY INU changes.

      9. 位置更新
      10. pos的FMS应当提供下列方法ition update according to the sensor used to establish the position fix: TACAN position update, Distance Measuring Equipment (DME)/DME position update, VOR/DME position update, VOR/VOR position, Visual position update, Radar position update, GPS position update, Infrared position update, Shutdown update, and Altitude updates.

        FMS位置更新应如下实施:

        INS1和INS2导航器应能够进行独立的位置更新。更新应归类为永久性或临时性。在以下段落中分别讨论了每类更新。由于GPS是一个位置传感系统,因此应禁止基于GPS的导航器的永久位置更新。因此,在G-I中运行的独立GPS导航器和仅使用GPS的subsodes中的集成KFN导航器都不能永久更新。对于可能需要相对于未知或不确定位置的指导的空能器或非精神仪器方法程序,可以暂时固定基于GPS的导航器。

        1. 永久位置更新
        2. Permanent position updates shall provide the following functionality:

          固定位置更新重置角position coordinates (geodetic latitude and longitude) of the FMS navigation solutions. Update of the vertical position coordinate is a separate operation. Permanent Position Update function shall compare a measure of true position with the FMS estimate of position at a time and place marked by the user.

          永久位置更新应测量相对于飞机的参考点位置以及相对于飞机的FMS估计值,然后显示为导航误差的真实位置和估计位置之间的距离。永久位置更新应允许用户在显示错误后接受对FMS导航解决方案的更正。每个FMS解决方案的更正可以单独接受。

          永久位置更新应禁止基于GPS的导航解决方案的位置更新(因为更可能会增加错误而不是减少错误)。

          永久位置更新应允许用户比较不同的传感器组合,以观察各种类型更新的相对准确性。

        3. 雷达位置更新
        4. Radar Position updates shall provide the following functionality:

          雷达位置更新将根据一般FMS永久位置更新定义使用,使用雷达的测量值进行。当光标与目标返回一致时,雷达位置更新将是最精确的。光标控制操作和雷达范围尺度的任何组合都可以用来将光标叠加到目标上,但是随着范围尺度降低,精度应提高。

        5. 传感器位置更新
        6. Several variants of the C-130 aircraft fleet have one or more sensors installed on the aircraft that are used to support the aircraft mission. The sensors include television sensors, infrared sensors, radar sensors, and laser sensors. The sensors are capable of providing accurate line-of-sight bearings from the aircraft to a point on the terrain. Some sensors also provide range form the aircraft to a point on the terrain. When the sensors are used to take a fix on terrain points with known locations, the sensor readings shall be made available to the FMS to make permanent position updates. The sensor information generally consists of terrain point bearing (azimuth and elevation) relative to the aircraft plus control and status data. The sensors generally can operate in an independent and slaved mode to facilitate cross check capability. The FMS shall provide the capability to direct any aircraft sensor capable of slaved operation in order to facilitate the location of a specific terrain point.

          飞机传感器系统的界面将根据一般FMS永久位置更新定义运行,使用传感器的测量值。

          The interface to aircraft sensor systems will allow user input to define the update point in the sensor image as either the reticle center or (if applicable) the track point of the Automatic Video Tracker (AVT). If the update point is the reticle center, the update shall be most precise when the terrain point image appears directly under the reticle in the center of the Field of View (FOV). If the update point is the track point, the update shall be defined according to the area the AVT is tracking.

          The interface to aircraft sensor systems will allow the user to employ any combination of applicable manual controller operations and FOV display modes (wide or narrow) to superimpose the reticle center on the terrain point. The interface to aircraft sensor systems will allow the user to engage the AVT.

        7. Shutdown Updates
        8. The user shall be able to update the RAW INU position prior to shutdown of the FMS by the use of surveyed coordinates or GPS position if GPS position is using the P Codes with a FOM of 1.

        9. Temporary Updates
        10. 临时位置更新应提供以下功能:

          A temporary position fixing capability shall be provided to guide the airplane relative to a sensor aiming point. This operation shall be referred to as Hot Cursor. Temporary position update shall be provided using measurements from the radar. The term Hot Cursor shall be used to describe the operating state where the position fix defined by the radar cursor is applied directly to the airplane position, without acceptance by the user. Hence, the flight director shall respond directly to the cursor movement.

          The system shall provide Hot Cursor steering for the airdrop and ARA procedure. Hot Cursor operation shall continue until the end of the procedure, when flight plan steering shall resume without the temporary position fixing. If (while the cursor is hot) the sensor selected to provide Hot Cursor steering (the radar or the IDS) fails or if the vertical sensor fails, the airplane guidance shall be according to the last valid position fix; that is, the temporary update shall freeze. Hot Cursor steering shall be provided according to the frozen position fix until the airdrop or approach procedure is complete. If the user selects a different sensor to accommodate the failure, and the newly-selected sensor is operative, or if the original sensor becomes operative again, then the temporary fix shall unfreeze and Hot cursor steering shall resume.

          对于永久性和临时位置固定,一旦用户选择了其他传感器以适应故障,则应禁止选择不工作传感器。如果所有替代传感器都失败并且用户尝试选择替代传感器,则在用户界面上不得显示访问权限,以表明其他传感器不起作用。临时位置更新的位置增量应计算并显示与永久位置更新相同。因此,用户应可以选择在特定时间瞬间进行标记和接受临时位置修复(即,使更新永久)。

        11. Mark Positions

        Markpoint(或标记位置)功能应为用户提供在飞机飞过地标时获取导航数据的手段。系统的时间,大地纬度和经度应获得标记,第二个用户操作应存储标记。用户应能够通过传感器光标位置定义标记点。

      11. Altitude Computation
        1. 系统高度
        2. The source of SYSTEM ALTITUDE may be barometric orthometric altitude, baro-inertial orthometric altitude, or GPS orthometric altitude. If the user-selected sensor for SYSTEM ALTITUDE becomes invalid, the alternate sensor shall be selected automatically, and the user shall be advised of the failure and the corresponding change in the source of SYSTEM ALTITUDE. If the user attempts to select a sensor that is invalid, the user shall be advised that the selection is prohibited.

        3. GPS Altitude Invalid Conditions

The GPS altitude shall be declared invalid when at least one of the following conditions are true:

        1. 系统高度计算的用户输入
        2. 用户输入应为需要衡量飞机高度或地面间隙的函数定义垂直位置/范围传感器,或目标高度或目标清除率。

        3. 雷达高度计地面间隙测量
        4. 双雷达高度计应集成到AMP系统中,并提供从0到50,000英尺的接地间隙信息。双雷达高度计应提供视觉和听觉低海拔警告指示,如果测得的高度下降到手动设置的限制以下。他们的准确性应为±2% from 0 � 5,000 ft. and±1% above 5,000 ft.

        5. 高度更新

高度更新应提供以下功能:

Altitude updates shall allow the user to execute an altitude update to determine the atmospheric deviation from standard day conditions. This deviation shall be characterized by the sea level pressure at the geodetic coordinates where the update is executed. Thus, the output of the Altitude Update function shall be sea level pressure and the inputs shall depend on the sensors aboard the airplane that may be used to derive a pressure-independent measure of orthometric altitude.

高度更新应允许海平面压力校正巴罗惯性压力高度(如果INU不起作用,则为气压高度),海平面压力应称为Baro-Altitude校正。

高度更新应允许用户在接收器跟踪至少三个卫星信号时执行GPS高度更新,并且功绩(FOM)的图足以满足更新的必要精度。GPS高度更新功能应使用GPS式高度和气压高度来确定巴罗高度校正。FMS应提供一种基于GPS高度和压力高度之间的差异来计算高度计设置的方法。所述高度计设置应显示以作为输入高度计设置的更新操作员选择

    1. 典型的气流几何形状
    2. 典型的气流几何形状are shown in Figure 1 and Figure 2.

      图1.气流几何形状

      Figure 2. IMC Airdrop Profile

    3. Rendezvous Guidance and Steering
    4. FMS应具有执行集合函数的能力。会合功能应通过移动目标预测截距点,并为会合的指导。目标的时间标记位置和速度应在MCDU上输入。TCA提供的位置,速度和信息应用于确定拦截点和过程。应向拦截点提供指导和转向。

    5. Orbital guidance
    6. 轨道应通过以下参数指定:

      轨道点,可作为预加载的航路点或通过地图坐标选择(例如纬度,经度,高程)

      轨道高度,AGL或MSL

      Orbit radius

      Left or right hand orbit

      Cone angle, defined as the angle between an aircraft body fixed vector (e.g. gun barrel) and the vertical. When cone angle is used, either altitude or radius may be specified, but not both.

      轨道速率,无论是空速还是轨道周期。

      此函数应计算出具有所选参数的轨道,并生成线索以输入和维护该轨道。应进行合理性检查,并提醒机组人员,如果输入了一组不一致的参数,则产生的轨道超出了飞机的功能,最终的轨道违反了操作限制(包括但不限于银行,Airspeed,Airspeed,高度,高度,高度,高度地形,gs),或者如果生成的轨道需要超过自动驾驶仪功能的性能,从而阻止了耦合操作。

      计算结果应通过MFD显示给飞行人员。此显示应包括所需的最大和最小库角,所需的空速以及上述所有参数。还应提供覆盖在导航图上的轨道的计划视图。

      Engagement of orbit steering to the MFD and HUD shall require a positive crew action, allowing the crew to follow other steering cues while previewing the orbit. Coupling of orbit guidance to the autopilot shall also require a positive crew action. Orbit guidance shall be discontinued when so commanded by the crew or when higher priority guidance is activated. In that case, the crew shall be alerted that guidance mode has changed. Calculation of the orbit shall compensate for estimated wind.

    7. Lateral and Vertical Navigation
      1. Lateral Leg Transitions
      2. Same as ARINC Characteristic 702A paragraph 4.3.3.1.2 with the following additions:

        The FMS shall be capable of sequencing waypoints manually or automatically, depending on the user's preference. The GOTO waypoint shall be sequenced automatically when automatic transitions are enabled and the transition point of the active leg has been passed. The user shall be able to manually command a transition to a new leg by selecting either a new GOTO waypoint or a new active leg except for waypoints associated with landing and drop zones.

      3. Airdrop Guidance and Steering Functions
        1. 带有临时位置更新的空投
        2. 为了使飞机相对于传感器瞄准点,应在空调过程中激活临时位置固定。请参阅“临时位置更新”。在空调期间,应根据用户定义的偏移瞄准点,用户选择的垂直传感器,用户选择的瞄准传感器(例如,倾斜范围或轴承)以及手动修剪命令的用户偏移的瞄准点,提供热光标转向。瞄准传感器。

          飞行指挥应当转向信号be based on the position that corresponds with Flight Director mode, but the temporary position corrections (that correspond with the temporary position update) shall be relative to the position of the INTEGRATED KFNS navigator. That is, the corrections shall be determined from the INTEGRATED KFNS navigator, and then applied to the guidance solution selected to operate the Flight Director. If an FMS-independent Flight Director mode is engaged, both the steering signals and the temporary position update shall be based on the position of the INTEGRATED KFNS navigator.

          If the user uncouples the lateral sensor from the FMS (for example, the user engages the manual mode of the sensor in order to operate the sensor independent of the FMS), then Hot Cursor steering shall be deactivated and the temporary position correction shall be reset to zero.

          The release point shall be a function of the down range and vertical range of the point of impact, the payload ballistics, and the wind. The ground range shall be a function of the position that corresponds with both the Flight Director mode and the user-selected aiming sensor for temporary position fixing. The vertical sensor for determining the airplane position relative to the Altitude Gate shall be the same sensor selected for computing the release point. The troop jump light system and cargo release mechanism shall be activated at the release point.

        3. 无临时位置更新的空投

        应根据飞行计划提供横向指导到释放点。对于依赖FMS的飞行主管模式,飞行主管的信号应基于与飞行主管模式相对应的位置。如果参与了独立于FMS的飞行主管模式,则转向信号应基于集成的肯德基导航员的位置。

        The release point shall be based on the down range and vertical range of the point of impact, the payload ballistics, and the wind. A single user input shall select a common sensor for SYSTEM ALTITUDE, for computing the release point, and for the Altitude Gate. The troop jump light system and the cargo release mechanism shall be activated at the release point.

      4. Airborne Sensor Approach (ASA)
      5. The FMS shall provide lateral and vertical guidance for the ASA function described in the SRD and in the following sections.

        1. ASA具有临时位置更新
        2. Temporary position fixing shall be activated during the approach procedure in order to steer the airplane relative to a sensor aiming point. During ARA, Hot Cursor steering shall be provided according to a user-defined offset aiming point, a user-selected vertical sensor, a user-selected aiming sensor (for example, slant range or bearing), and manual trimming commands for the aiming sensor.

          The lateral steering signals for the Flight Director shall be based on the position that corresponds with the Flight Director mode, but the temporary position corrections (that correspond with the temporary position update) shall be relative to the position of the INTEGRATED KFNS navigator. That is, the corrections shall be determined from the INTEGRATED KFNS navigator, and then applied to the guidance solution selected to operate the Flight Director.

          如果参与了独立于FMS的飞行主管模式,则转向信号和临时位置更新均应基于集成KFNS Navigator的位置。如果用户从FMS中解开瞄准传感器(例如,用户与传感器的手动模式接合以操作传感器以独立于FMS操作),则将放电热光标转向,临时位置校正应重置为零。

          垂直指导应基于达阵点的下降范围和垂直范围。地面范围应成为与飞行导演模式相对应的位置和用户选择的瞄准传感器进行临时位置固定的函数。垂直引导的垂直传感器应为系统高度选择的传感器。因此,单个用户的输入应为系统高度和垂直指导定义一个通用传感器。

          在接近预定义LZ航路点的主动方法中,FMS应生成垂直转向指标,如果遵循,则应引导飞机捕获滑行坡。GlideLope捕获指导应基于对FMS的操作员和传感器输入,并且输出应为GlideLope偏差指示器。同样,指导信息和咨询应输出到MFD。FMS应根据操作员输入执行GlideLope捕获功能。这些条目应包括滑坡,LZ高程,高度以上的高度,距离接近点的距离以及错过的接近点距离。

          The FMS shall also process inputs for altitude (GPS altitude or barometric altitude) or ground clearance (CARA radar altimeter) from the aircraft sensors. When the required entries have been made, the minimum and maximum altitude for glideslope capture shall be computed and displayed.

          当IP Waypoint Enloute过渡到LZ后,FMS应显示GlideLope捕获的高度范围,即Min/Max Alt。如果飞机高度在进近期间的最小/最大GlideLope捕获高度范围之外,则FMS应在每个MCDU上的消息窗口中显示ARA门(闪烁)。

        3. 没有临时位置更新的ASA

应根据飞行计划提供横向指导到达阵点,并应向触地点或错过的进近点(地图)提供垂直指导。对于依赖FMS的飞行总监模式,飞行主管的横向转向信号应基于与飞行主管模式相对应的位置。如果参与了独立于FMS的飞行主管模式,则转向信号应基于集成的肯德基导航员的位置。

垂直指导应基于达阵点的下降范围和垂直范围。单用户输入应为系统高度和垂直飞行方向定义一个通用传感器。在根据FMS飞行计划的非精确仪器方法中,基于用户选择的垂直传感器的垂直咨询应在MCDU显示。

  1. Autothrottle
    1. AutothrottlePerformance Requirements

    The AWFCS should include an autothrottle capability that performs the following functions: airspeed control in all phases of flight including SKE (station keeping equipment) formation , airdrop operations, approach, autoland, and go-around, and hold of a manually selected airspeed. All functions shall be available in the range of idle to maximum forward thrust. When the aircraft is stabilized in a climb, cruise, descent, or coordinated turn mode and the throttle is not operating at the minimum or maximum limits, the autothrottle shall maintain the aircraft speed within±5 knots of the engaged airspeed under the following conditions:

    空速:1.2 x vs至0.64m/318节CAS

    海拔:海平面至45,000英尺

    Gross Weight: 90,000 to 175,000 pounds

    The autothrottle function shall control the throttle movement in response to speed and vertical flight path commands. There shall be no undesirable periodic oscillations of the throttle commands. There shall be no transient engagement oscillations. The autothrottle function shall provide fail-passive. When engaged, the automatic flight control function shall provide the autothrottle functions defined in Table 4.1.

    当任何发动机超过扭矩和T.O中定义的扭矩(涡轮入口温度)限时,自动机应断开连接。1C-130-1。油门力(未参与的自动室功能)应为6.5磅。在稳定的攀登,巡航,下降和协调的转弯期间,自动机功能应在运行。所有模式均应从闲置到最大向前推力。AMP架构应允许飞行员以16磅的标称力在物理上击败自动座功能。每个油门。

    Table 4.1. Autothrottle Function (Engaged) Performance Limits

    Mode or Submode1

    控制或传感器

    Parameter

    Limits

    Airspeed/Mach Hold(AMAH) Note 2, 5, 6

    AutothrottleControl

    中央空气数据计算机(CADC)

    命令目标

    Tolerance

    山雀控制范围5

    TIT Hold Error

    Torque

    Mach Engage Range

    Mach Hold Error

    KCAS Engage Range 6

    KCAS Hold Error

    油门控制授权

    油门速率限制

    Wind Shear/ Gust Compensation

    安顿时间

    残留振荡

    � 1 KCAS or±0.01 M

    17to 106 %, not to exceed

    875°C TIT(T56-7)

    1010°C TIT (T56-15)

    � 2%

    1.2 Vstall to 0.64 M

    � 0.01 M

    100至318 kCas

    5 kCas

    29°(idle) to 80°(max)

    � 7°/sec Throttle Angular Velocity (TAV)

    Note 7, 8

    在2000 fpm或以下的这种模式的参与或扰动之后,应在30秒内实现特定的ALH精度

    周期不得少于20秒

    VNAV/FMS

    Submodes:

    Climb

    巡航

    下降

    AutothrottleControl

    FMS

    CADC

    山雀控制范围

    TIT Hold Error

    Mach Engage Range

    Mach Hold Error

    IAS Engage Range

    IAS Hold Error

    油门控制授权

    油门速率限制

    17to 106 %, not to exceed

    875°C TIT(T56-7)

    1010°C TIT (T56-15)

    � 2 %

    1.2 Vstall to 0.64 M

    ±0.01 M

    100至318 kCas

    ±5 knots

    29°(idle) to 80°(max)

    ±7°/sec TAV

    Take Off /Go Around (TOGA)3

    AutothrottleControl

    转到按钮

    toga命令目标

    山雀控制范围

    TIT Hold Error

    油门控制授权

    油门速率限制

    Manual Control

    17to 106 %, not to exceed

    875°C TIT(T56-7)

    1010°C TIT (T56-15)

    � 2 %

    29°(idle) to 80°(max)

    � 20°/sec TAV

    方法(Autoland)4

    (APPR)

    AutothrottleControl

    山雀控制范围

    TIT Hold Error

    油门控制授权

    油门速率限制

    Flare Limits

    (Throttle Retard)

    Throttle Range Limit

    17to 106 %, not to exceed

    875°C TIT(T56-7)

    1010°C TIT (T56-15)

    � 2 %

    29°(idle) to 80°(max)

    � 7°/sec TAV

    Active at 50 ft AGL

    10% RMS nominal throttle position

    笔记:

    1如果与其他参与模式兼容,则可以使用脱离的subsode。

    2通过空速持有命令控制,以1.0 kcas或�0.005马赫的增量允许进行调整。

    3During go around the autothrottle function shall drive the throttles to the takeoff position within 4 seconds.

    4The autopilot function shall provide the autothrottle function with the command to retard the throttles during the flare maneuver.

    5 Autothrottle离合器应设计为排除过热。

    6当飞机速度和选定速度之间的差异在5节之内时,自动对体的互动在稳态条件下,不会导致节气门动作的1.5度以上。

    7The airspeed error shall be held within 2% of clutched-in airspeed in a non-linear wind shear of up to 5 knots per 100 feet with aircraft sink rates up to 1,000 feet per minute.

    8 In vertical or longitudinal gusts, the maximum airspeed error shall not exceed 3% of the clutched-in airspeed.

    The AMP cockpit arrangement shall be designed using JSSG-2010 as a guide.

  2. Station Keeping Equipment (SKE)
  3. As a minimum, the current AN/APN-169C SKE capability shall be retained and integrated.

    需要更换现有的AN/APN-169C SKE系统。如果更换,则最少的替换系统应提供以下功能:允许飞机在夜间和所有天气条件下进行精确的空投,会合,空气加油和Airland Missions,以包括仪器气象条件(IMC)。该系统应允许只有2架飞机和多达100架飞机(250架)飞机,以在500英尺至100 nms的可选范围内保持地层/分离。该系统应允许多个地层在500英尺到100 nms的可选距离上互相相互裂变并保持地层/分离。该系统应具有所有类似装备的飞机以及当前配备所有类似飞机的飞机内天气内的定位/避免碰撞能力。该系统应与当前和未来的基于地面区域标记(ZM)或兼容系统兼容,并应在40 nms(所需100 nms)内询问系统。该系统应在编队中的所有飞机上提供相对位置信息,或者选择选定的飞机(即元素或串行)的子集,以包括距离,轴承,标题,空速和相对高度。该系统应提供转向命令以纠正和维护编队位置设置。该系统应提供类似设备的飞机和其他IMC组合的类似飞机的视觉和听觉邻近性和碰撞警告,该飞机在选定的范围内侵犯了该机构,并为信号或系统退化的损失提供了警告。该系统应能够在包括Airdrop在内的SKE操作的所有阶段与自动驾驶仪耦合并与自动驾驶仪接口。

  4. RADAR Beacon Characteristics
  5. Parameter

    SST-181X-E

    PPN-19

    SMP-1000

    Output to Radar (Beacon RF)

    Response Freq. (MHz)

    8800-9500 (9310 nom.)

    9250-9450(9310 NOM。)

    16.25±0.10 GHz

    9310

    脉冲宽度

    0.3±0.1ms

    0.35±0.05ms

    0.375±0.025ms

    Pulse Coding

    代码间距(NM)

    10 (single pulse)

    2 4

    35

    46

    5 7

    6 8

    79

    8 10

    9 11

    10 12

    代码脉冲间距(NM)

    A 1

    B 4

    C 1, 2 alternating

    D 1, 4 alternating

    E 3,4交替

    F 2,4交替

    G 0 (single pulse)

    SST-181代码1-5

    PPN-19 Codes A-G

    Strobe

    Polarization

    水平的

    水平的

    水平的

    雷达的输入(雷达RF)

    讯问频率。

    8800-9500 MHz

    (9375 nom)

    9375 MHz

    16-17 GHz

    8800 - 9800 MHz

    脉冲宽度

    0.25�5.0

    i-和j波段:0.2�3.0m

    GAR-I band: 0.25 � 3.0m

    0.3m秒min.

    Polarization

    水平的

    水平的

    水平的

  6. 湍流
  7. A further objective is detection of turbulence. The system should measure the spectral width of each weather return and declare turbulence present whenever the one-sigma value (standard deviation) of the spectral width is equal to or greater than 5 m/s. The system should provide data to the display system such that areas of turbulence can be identified using unique colors or techniques to readily alert the operator. The system should be capable of detecting turbulence to a range of 50 NM.

  8. Air Data System
    1. 皮托式静态系统

    在任何时候的总功率过载加热器shall not exceed 1200 watts. In still air at an ambient temperature between 20 and 30 degrees F. , the heater shall not exceed 275 watts after 5 minutes of heater operation.

    皮托压力线尾部延伸到pitot pressure chamber and on to the pressure fitting shall consist of 0.25 inch outside diameter tubing having a wall thickness of 0.022 inch. The fitting shall be in accordance with MIL-F-5509 and MS33656-4. The static pressure line in the tube and extending to the fitting shall consist of 0.25 inch outside diameter tubing having a wall thickness of 0.022 inch. The static pressure line fitting shall be in accordance with MIL-F-5509 and MS33656-6. The static pressure line in the aircraft shall have a 3/8 inch outside diameter with a 0.035 wall thickness for aluminum tubing. The pitot pressure lines in the aircraft shall have a � inch outside diameter with a wall thickness of 0.035 inch for aluminum tubing. Supports for the tubing shall be provided at appropriate lengths. Lines shall be appropriately marked near any fitting to distinctly show which line is static and which is pitot.

  9. Air Vehicle Electrical System
  10. ESU provides MIL-STD-704E AC power to the Main and Essential Avionics Buses. The ESU electrical system TCTO 1C-130-1339 is comprised of 2 Bus Switching Systems (BSS), each consisting of a 10 KVA inverter, Rectifier Control Unit, and a Base assembly. The ESU Main and Essential AC Avionics buses are rated at 10KVA 3-phase power per bus. However, each bus is limited to 3.3KVA per phase per bus. ESU also replaces the 250VA and 2500VA inverters with form, fit, and function units. ESU replaces the Frequency Sensor Relay and Voltage Regulators with Generator Control units (GCU) and updates the overhead electrical control panel.

  11. Operational Flight Software
    1. 应用程序程序接口(API)
  12. Flight Deck

API应定义并提供以下关键特征:

  1. Software Verification and Validation
  2. Contractor shall have a disciplined, standardized software verification and validation process. This process includes technical and documentation reviews, quality and configuration audits, software process/product measurements, and software certification (testing). Contractor shall develop a Verification and Validation plan which ensures that the software functionality is correctly implemented and that the customer�s software requirements have been achieved.

    1. Software Testing/Certification

软件测试应包括单元(组件)测试,集成测试,验证测试,系统测试和正式接受测试。

Software testing, at least, shall include these types of tests: white-box, black-box, recovery, performance, stress, and regression. Real-time tests shall, at least, include timing of data and parallelism of the processes that handle the data, interrupt handling and impacts of hardware faults on software processing. Regression tests shall be conducted before release of each configured software baseline. System testing shall, at least, include recovery testing, stress testing, performance testing and regression testing.

政府圈复杂的欲望ity of each software module not exceed ten (10). Modified COTS or NDI equipment software shall be re-tested and re-qualified (via methodology equivalent to the original certification) to the level of functional criticality for its usage in the AMP architecture.